УДК 633.31:631[559+442.1]

ПРОДУКТИВНОСТЬ СОРТОВ ЛЮЦЕРНЫ НА СУПЕСЧАНОЙ ПОЧВЕ ЦЕНТРАЛЬНОЙ ЗОНЫ БЕЛАРУСИ

Д.А. Мочалов, Д.Н. Володькин, Н.Ф. Надточаев, кандидаты с.-х. наук РУП «Научно-практический центр НАН Беларуси по земледелию» (Поступила 08.02.2022)

Рецензент: Боровик А.А., кандидат с.-х. наук

Аннотация. Исследования, проведенные на связносупесчаной почве в 2018-2021 гг., показали, что сорта люцерны посевной Фравер и Медиана ежегодно обеспечивали стабильно высокую урожайность зеленой массы (397-401 ц/га в среднем за 4 года жизни), сухого вещества (85,5-86,5 ц/га), кормовых единиц (71,8-72,8 ц/га), обменной энергии (80,5-81,5 ГДж/га) и сырого протеина (15,7-16,0 ц/га). Сорта люцерны посевной Плато, Тимбале и Камила высокую урожайность сформировали 3 года из четырех, Верко и Малвина — 2 года, однако в среднем она несущественно уступала наиболее продуктивному сорту, и только люцерна изменчивая Вега 87 показала достоверно меньшую продуктивность.

Введение. Главным источником кормового белка для животноводства в настоящее время и в перспективе являются растительные корма, на которые приходится более 90 % всего потребляемого животными протеина [1]. Традиционно важным источником высокобелковых кормов остаются многолетние бобовые травы, служащие в полевом кормопроизводстве гарантом долгосрочного обеспечения кормами, особенно в условиях ограниченных материальнотехнических ресурсов [2]. Одной из самых распространенных высокобелковых кормовых культур в мире является люцерна, она возделывается более чем в 80 странах мира, занимая свыше 40 млн га [3]. Около четверти ее посевов приходится на США, где эта культура является третьей по стоимости, уступая только кукурузе и соевым бобам [4]. В связи с аридизацией климата люцерна становится основной кормовой культурой во всех природно-климатических регионах Российской Федерации [5]. Ареал ее возделывания за последние 30 лет значительно расширился в северном и северо-восточном направлениях [6].

Люцерна отличается целым рядом несомненных достоинств: засухоустойчивость, зимостойкость, многоукосность, продуктивное долголетие, относительная неприхотливость к почвам, способность к высокой азотфиксации [7]. По содержанию сырого протеина, сбор которого может достигать 1,5–2,6 т/га, люцерна превосходит остальные многолетние бобовые травы [8, 9]. К тому же эта культура богата минеральными соединениями и витаминами, а белки относятся к физиологически активным, поэтому белок люцерны не только хорошо усваивается животными, но и способствует усвоению белка других культур [10]. Важным биологическим свойством люцерны является быстрый темп роста, обеспечивающий при благоприятных режимах влажности, питания и температуры до 4–5 укосов за вегетационный период [11]. Люцерна обладает высокой способностью к фиксации атмосферного азота. В надземной массе она накапливает до 200 кг/га азота ежегодно [12]. После ее трехлетнего выращивания в почве остается от 40 до 192 кг/га азота [4].

Биометрические показатели растений люцерны в большей степени зависят как от погодных условий периода вегетации, так и биологических особенностей сорта [13]. Эффективность возделывания люцерны во многом определяется результативностью селекции и достоинствами новых сортов [14]. Исследования российских ученых показывают, что разница по сбору сухого вещества между сортами достигает по разным источникам от 12 до 23 % [1, 15]. Травостои люцерны посевной являются более продуктивными относительно сортов люцерны изменчивой [16].

Методика проведения исследований. Полевые опыты в двух закладках проводили на опытном участке РУП «Научно-практический центр НАН Беларуси по земледелию» на дерново-подзолистой супесчаной почве, развивающейся на связных пылеватых супесях, подстилаемых моренным суглинком с глубины 0,4-0,9 м. Агрохимическая характеристика опытного участка: рН -6,14, гумус -2,70 %, P_2O_5-200 мг/кг, K_2O-286 мг/кг почвы.

В опыте изучали 7 сортов люцерны посевной и 1 – изменчивой:

- 1. Вега 87 (РФ) люцерна изменчивая, сорт допущен к использованию с 2008 г. по всей Беларуси;
- 2. Верко (Германия), допущен с 2011 г. по Брестской, Гомельской, Гродненской и Минской областям;
 - 3. Малвина (Литва), допущен с 2007 г. по всей республике;
- 4. *Медиана* (Сербия), допущен с 2014 г. по Брестской и Гродненской областям:
- 5. *Плато* (Германия), допущен с 2010 г. по Брестской, Гродненской, Минской и Могилевской областям;
- 6. *Тимбале* (Франция), допущен с 2014 г. по Брестской и Гродненской областям;
 - 7. Камила (Германия), допущен с 2017 г. по республике;
- 8. *Фравер* (Германия), сорт допущен к использованию с 2018 г. по республике, за исключением Гомельской области.

Сорта нормой высева 5 млн всхожих семян на 1 га высевали 8 мая 2018 г. и 30 апреля 2019 г. после кукурузы по традиционной обработке почвы. Ежегодно осенью вносили минеральные удобрения в виде аммонизированного суперфосфата и хлористого калия ($P_{60}K_{120}$). Учетная площадь опытных делянок составляла $10~{\rm M}^2$, повторность — четырехкратная. Уборка (3—4 укоса за сезон) проводилась вручную путем скашивания зеленой массы в фазу бутонизациицветения люцерны и взвешивания ее со всей делянки опыта.

Погодные условия в годы проведения исследований складывались поразному (таблица 1). 2018 г. с теплой погодой и достаточным количеством осадков во вторую половину лета при их дефиците в мае-июне, когда урожай формируется за счет весенних влагозапасов в почве, оказался благоприятным

для роста и развития люцерны 1-го года жизни на протяжении всего вегетационного периода.

Таблица 1 — **Метеорологические условия в годы проведения исследований** (по данным метеостанции Борисов)

Год	Среднесуточная температура	Осадки, мм					
	воздуха с мая по сентябрь, °С	май	июнь	июль	август	сентябрь	всего
2018	17,5	10	42	125	70	50	297
2019	16,4	73	50	106	117	40	386
2020	16,1	54	151	82	83	50	420
2021	16,7	128	99	34	96	77	434
норма	15,4	58	83	87	76	66	370

В 2019 г. отмечен небольшой дефицит осадков в июне, что негативно повлияло на величину урожайности 2-го укоса трав 2-го года жизни. Но для люцерны 1-го года жизни (вторая закладка опыта) осадков было достаточно не только для самой культуры, но и сорных растений, особенно проса куриного. По этой причине урожая люцерны в этот год не получено, поскольку проводилось только многократное скашивание сорняков.

Погодные условия 2020 г. благодаря высоким температурам воздуха и достаточному количеству осадков в июне благоприятствовали хорошему росту растений люцерны. Однако две первые засушливые декады августа (1/3 осадков от нормы) при превысившей норму на 0,8 °C температуре сдержали активный прирост зеленой массы многолетних трав последнего укоса.

В 2021 г. прохладная и влажная погода в мае способствовала формированию высокой урожайности зеленой массы трав, хотя в развитии растения значительно (приблизительно на 1–2 недели) отставали относительно прошлых лет. Начало бутонизации наблюдалось только 8 июня. Июнь оказался не только теплым, но и дождливым, благодаря чему и во втором укосе сформирован хороший урожай люцерны. В то время как засушливая и жаркая погода июля, напротив, не позволила нарастить достаточно зеленой массы этой культуры в третьем укосе.

Результаты исследований и их обсуждение. В первый год жизни посевы люцерны в среднем по двум закладкам 2018 г. и 2019 г. обеспечили минимальный уровень урожайности зеленой массы, который колебался в пределах от 234 ц/га по сорту Вега 87 до 294 ц/га по сорту Плато (рисунок 1). По сути, это разделенный урожай люцерны 2018 г., поскольку во второй закладке 2019 г. он состоял из одних сорняков. Только Вега 87 и Верко показали достоверно меньшую урожайность относительно лучшего сорта, а у всех других (Малвина, Медиана, Тимбале, Камила, Фравер) разница находилась в пределах ошибки опыта.

Во второй год жизни (2019-2020 гг.) сформирована самая высокая урожайность культуры, которая в среднем по всем изучаемым сортам составила 540 μ га, что на 44 % и 58 % соответственно больше, чем получено в последующие

годы. Наибольший сбор зеленой массы в этот год жизни отмечен у Bera~87-558~ц/га и Π лато -552~ц/га, а наименьший - у Tимбале (516 ц/га), хотя эта разница не существенна (НСР $_{05}~54~\text{ц/га}$). Такая высокая урожайность у сорта Bera~87~связана с наличием в ценозе клевера лугового, который присутствовал в семенах люцерны. Его доля в урожае зеленой массы в первом укосе доходила до 17 %. При этом заметно снижалось содержание сухого вещества в урожае зеленой массы.

В третий год жизни урожайность зеленой массы колебалась от 340 ц/га (Вега 87) до 395-399 ц/га (Медиана, Фравер). Малвина подобно сорту Вега 87 показала достоверное снижение урожайности относительно лучшего сорта. Аналогичная картина отмечена и в четвертый год жизни люцерны, где Фравер и Медиана обеспечили 372–386 ц/га, а Вега 87 и Малвина – только 304–309 ц/га.

В среднем за 4 года жизни Медиана сформировала 401 ц/га зеленой массы. Несущественное снижение отмечено у сортов Фравер (–4 ц/га), Плато (–13), Камила (–20), Тимбале (–26), Верко, Малвина (–29 ц/га). И только люцерна изменчивая Вега 87 показала существенно меньший сбор зеленой массы (–42 ц/га).

Если рассматривать сорта с позиции стабильности урожаев, то можно отметить, что этим хорошим качеством обладали только 2 сорта: *Медиана* и *Фравер. Плато, Тимбале* и *Камила* показали высокую урожайность зеленой массы 3 года из четырех, *Верко* и *Малвина* – 2, а *Вега* 87 – только один год из четырех.

Рисунок 1 – Урожайность зеленой массы люцерны за 2018-2021 гг., ц/га

Сбор сухого вещества в среднем за четыре года жизни люцерны колебался от 74,9 ц/га у сорта Beza 87 до 86,5 ц/га у сорта Meduana (рисунок 2). Но только люцерна изменчивая показала существенно меньшую урожайность относительно лучшего сорта. Превышение сбора сухого вещества у сортов люцерны посевной над люцерной изменчивой составило 6,1–15,5 %. Надо полагать, что это является следствием более быстрого отрастания люцерны посевной после укосов.

По выходу кормовых единиц и обменной энергии отмечена аналогичная сбору сухого вещества картина. Лучшим сортом можно считать сорт *Медиана*, который в среднем за 4 года жизни показал 72,8 ц/га к.ед. и 81,5 ГДж/га обмен-

ной энергии. Только *Вега* 87 сформировала за это время достоверно меньшую урожайность — на 10 ц/га и 11,1 ГДж/га. По сбору сырого протеина между этими двумя сортами также имеются существенные различия — 2,2 ц/га или 14 % при среднегодовом сборе 16,0 и 13,8 ц/га.

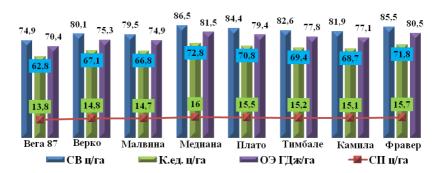


Рисунок 2 – Продуктивность сортов люцерны (в среднем за 4 года жизни)

Результаты биохимического анализа растений не показали каких-либо закономерных различий в химическом составе зеленой массы сортов как и по структуре листьев в общем урожае. В среднем содержание кормовых единиц в 1 кг сухого вещества составило 0,84, обменной энергии – 9,4 МДж, сырого протеина – 184 г или 220 г на 1 к.ел.

Выволы

- 1. Наибольшую и ежегодно стабильно высокую урожайность зеленой массы на связносупесчаной почве Центральной зоны Беларуси показали сорта люцерны посевной *Медиана* и *Фравер*, которая в среднем за 4 года жизни равнялась 401 и 397 ц/га соответственно.
- 2. Сорта люцерны посевной *Плато*, *Тимбале* и *Камила* высокую урожайность зеленой массы обеспечили 3 года из четырех, *Верко* и *Малвина* 2 года, а средний ее сбор несущественно уступал наиболее продуктивному сорту, и только люцерна изменчивая Beea 87 показала достоверно меньшую урожайность зеленой массы.
- 3. Сорта люцерны посевной по сбору сухого вещества превышают люцерну изменчивую Bera~87 на 6,1-15,5~%, сырого протеина на 6,5-15,9~% с несущественной разницей внутри вида, а к лучшим из них можно отнести Φ равер и Meduaha.

Литература

- 1. *Ломов, М.В.* Люцерна в конкурсном испытании / М.В. Ломов, Ю.М. Писковацкий // Кормопроизводство. -2020. -№4. С. 30-34.
- 2. *Михалев, В.Е.* Люцерна важная кормовая культура / В.Е. Михалев, Е.Ю. Ушакова // Актуальные направления селекции и использование люцерны в кормопроизводстве: сб. науч. тр. Вып. 4 (52). М.: Угрешская типография, 2014. С. 196-204.

- 3. Агротехника возделывания сортов люцерны селекции ВНИИ кормов им. В. Р. Вильямса на семенные и кормовые цели (рекомендации). М.: ФГУ РЦСК, 2008. 39 с.
- 4. *Putnam*, *D*. Alfalfa, Wildlife and the Environment / D. Putnam et al. // The Importance and Benefits of Alfalfa in the 21^{st} Century. -2001. -24 p.
- 5. Научные основы селекции и семеноводства многолетних трав в Центрально-Черноземном регионе России: научное издание / С.В. Сапрыкин [и др.]. – Воронеж: ОАО «Воронежская областная типография, 2020. – 496 с.
- 6. Селекция и семеноводство многолетних трав в Центрально-Черноземном регионе России: научное издание / И.М. Шатский и др. Воронеж: ОАО «Воронежская областная типография, 2016. 236 с.
- 7. *Лазарев, Н.Н.* Люцерна в системе устойчивого кормопроизводства / Н.Н. Лазарев, О.В. Кухаренкова, Е.М. Куренкова // Кормопроизводство. 2019. №4. С. 18–23.
- 8. Привалов, Ф. Многолетние травы основной источник белка / Ф. Привалов, П. Васько // Белорусское сельское хозяйство. –2019. –№5. –С. 12-15.
- 9. *Тиво, П.Ф.* Качество урожая люцерны, возделываемой в условиях Поозерья / П.Ф. Тиво, Л.А. Саскевич, Д.А. Постникова // Земледелие и растениеводство. 2020. №4. С. 7–12.
- 10. Долголетнее использование люцерны изменчивой сорта Пастбищная 88 в одновидовых посевах и травосмесях / Н.Н. Лазарев [и др.] // Кормопроизводство. -2010. -№1. -C. 9-12.
- 11. Алтунин, Д.А. Увеличение производства белковых кормов / Д.А. Алтунин // Достижение науки и техники АПК. -2001. -№8 С. 13.
- 12. *Лазарев, Н.Н.* Луговые травы в Нечерноземье: урожайность, долголетие, питательность / Н.Н. Лазарев, А.Н. Исаков, А.М. Стародубцева. М.: Издательство РГАУ-МСХА им. К.А. Тимирязева, 2015. 165 с.
- 13. *Тетюцких, А.Н.* Урожайность и выход сухого вещества сортов люцерны изменчивой в зоне северной лесостепи Свердловской области / А. Н. Тетюцких, С. К. Мингалев // Молодежь и наука. -2018. -№3. С. 69–72.
- 14. *Косолапов, В.М.* Сорта кормовых культур селекции ФГБНУ «Федеральный научный центр кормопроизводства и агроэкологии имени В.Р. Вильямса»: монография / В.М. Косолапов [и др.]. Москва: ООО «Угрешская типография», 2019. 92 с.
- 15. Соложенцева, Л.Ф. Сравнительная характеристика образцов люцерны в питомнике конкурсного сортоиспытания / Л.Ф. Соложенцева, Ю.М. Писковацкий // Кормопроизводство. -2020. №3. С. 25 28.
- $16.\ Kуренкова,\ E.M.\$ Урожайность различных сортов люцерны изменчивой в зависимости от способов основной обработки почвы и известкования: автореф... канд. с.-х. наук; $06.01.06\ /$ E.M. Куренкова. М., 2021. 22 с.

PRODUCTIVITY OF ALFALFA VARIETIES ON SANDY LOAM SOIL OF THE CENTRAL ZONE OF BELARUS

D.A. Mochalov, D.N. Volodzkin, N.F. Nadtochaev

Abstract. Studies conducted on sandy loam soil in 2018-2021 showed that alfalfa var. Fraver and Mediana annually provided consistently high yields of green material (397-401 dt/ha on average for 4 years of life), dry matter (85.5-86.5 dt/ha), fodder units (71.8-72.8 dt/ha), exchange energy (80.5-81.5 GJ/ha) and crude protein (15.7-16.0 dt/ha). Plato, Timbale and Kamila alfalfa varieties formed high yield for 3 years out of four, Verco and Malvina 2 years, but on average it was not significantly inferior to the most productive variety, and only variegated alfalfa var. Vega 87 showed significantly lower productivity.