УДК 575.234:631.527.5:633.14:633.11

СОЗДАНИЕ НОВЫХ ФОРМ ТЕТРАПЛОИДНОЙ РЖИ (SECALE CEREALE L., 4X = 28) С ВКЛЮЧЕНИЕМ ГЕНЕТИЧЕСКОГО МАТЕРИАЛА ПШЕНИЦЫ (TRITICUM AESTIVUM L.) НА ОСНОВЕ ИНТРОГРЕССИВНОЙ ГИБРИДИЗАЦИИ С ТРИТИКАЛЕ (TRITICOSECALE WITTM., 6X = 42)

С.И. Гриб¹, доктор с.-х. наук, профессор, академик НАН Беларуси, **Н.Б. Белько²**, кандидат биол. наук, **И.С. Гордей²**, аспирант ¹Научно-практический центр НАН Беларуси по земледелию, г. Жодино ²Институт генетики и цитологии НАН Беларуси, г. Минск

(Поступила 9.10.2014 г.)

Аннотация. Экспериментально обоснован метод создания тетраплоидной ржи (Secale cereale L., 4x=28) с включением генетического материала пшеницы (Triticum aestivum L.). Изложены результаты исследований по интрогрессивной гибридизации тетраплоидной ржи с гексаплоидными тритикале (Triticosecale Wittm., 6x=42) — видом-посредником и источником хромосом геномов пшеницы. Представлены данные по кариотипическому составу ржано-тритикальных гибридов F_1BC_1 в связи с созданием форм тетраплоидной ржи с интрогрессией генетического материала пшеницы.

Введение. Межвидовые интрогрессии — важнейший фактор формои видообразования в эволюции растений. Классическая генетика и молекулярно-генетическая инженерия недостаточно используют эволюционный потенциал этого фактора для практической селекции. Современные данные геномики, протеомики и феномики вскрыли значительное участие дупликаций, транслокаций и интрогрессий целых структурно-функциональных блоков генетического материала в эволюции растений.

Целенаправленное преобразование геномов растений на основе межвидовых интрогрессий является важнейшей проблемой современной генетики и позволяет решать многие задачи практической селекции. Кардинальная проблема интрогрессии генетического материала для предотвращения «генетической эрозии» сельскохозяйственных растений —

перенос не отдельных генов (генетическая трансформация), а блоков генов скоординированно работающих на признак на основе межгеномных комбинаций и рекомбинаций хромосом [1] и поэтапного ДНК-маркирования гибридного материала для выделения интрогрессий.

Большая работа в этом направлении проделана по интрогрессии генетического материала ржи в геном пшеницы. Известно множество сортов пшеницы, содержащих в своем геноме пшенично-ржаные хромосомные транслокации. Например, известная транслокация 1BL/1RS придает пшенице устойчивость к листовой, стеблевой, бурой ржавчине и мучнистой росе и обеспечивает высокий потенциал урожайности, а транслокация 2BS/2RL несет комплекс генов, обуславливающих устойчивость к гессенской мухе. Такая транслокация как 2AL/2RL увеличивает содержание белка в зерне. Вышеперечисленные примеры обосновывают перспективу использования межвидовых интрогрессий в селекции ржи [2-4].

Интрогрессия генетического материала пшеницы в геном ржи должна быть направлена на решение следующих проблем:

- расширение генофонда исходного материала;
- снижение длины стебля и повышение устойчивости растений к полеганию на основе использования генов короткостебельности;
 - повышение устойчивости к прорастанию зерна в колосе;
 - увеличение содержания белка и улучшение хлебопекарных свойств.

Донором ценных хозяйственно-полезных признаков и свойств для ржи может служить пшеница. Пшеница — культура, характеризующаяся наиболее ценными характеристиками, такими как короткостебельность (Rht) и устойчивость к полеганию, устойчивость к предуборочному прорастанию зерна (Amy-амилазный локус), высокое содержание клейковины и др.

Целью данной работы является разработка методологии межвидовой интрогрессии у хлебных злаков, создание рекомбинантной тетраплоидной ржи ($S.\ cereale\ L.$) с интрогрессией генетического материала пшеницы.

Разработан «Способ получения формы ржи с интрогрессией генетического материала пшеницы, основанный на гибридизации тетраплоидной ржи с гексаплоидным тритикале — видом-посредником и источником геномов пшеницы (рисунок). Использование гексаплоидных тритикале позволяет частично преодолеть про- и постгамную несовместимость ржи с пшеницей, обусловленную ингибированием S-PHKаз несовместимости ржи [5, 6] и получать ржано-тритикальные пентаплоиды F_1 (RRABR, 5x=35), кариотип которых включает один диплоидный (базовый) геном RR ржи и гаплоидные A, B и R геномы пшеницы и ржи.

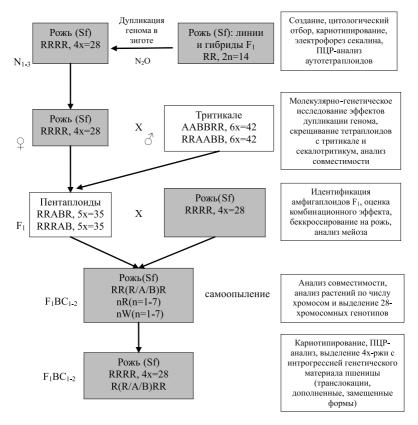


Рисунок – Схема создания тетраплоидной ржи (S. cereale L.) с интрогрессией генетического материала пшеницы (T. aestivum)

Базовый геном ржи стабилизирует кариотип пентаплоидов F_1 , обеспечивая частичную их фертильность, а гаплоидные филогенетически отдаленные A, B и R геномы способствуют образованию у них гамет с широким спектром межгеномных рекомбинаций. С целью их утилизации и получение проводится беккроссирование ржано-тритикальных пентаплоидов F_1 на самофертильные линии тетраплоидной ржи (sf) и получение ржано-тритикальных гибридов F_1BC_1 . Введение в геном гибридов F_1BC_1 генов самофертильности (sf) позволяет сохранить полученные межгеномные рекомбинации при самоопылении и поддержать их в поколениях репродукции. Проводится кариотипирование гибридов F_1BC_1 с помощью метода дифференциального окрашивания

хромосом (С-бэндинг) и выделение растений ржи с интрогрессией генетического материала пшеницы. Рекомбинантные растения размножаются путем самоопыления и проводится комплексная оценка по морфолого-биологическим и хозяйственно-полезным признакам.

Завязываемость гибридных зерен в скрещиваниях тетраплоидная рожь х гексаплоидное тритикале (таблица 1) как показатель прогамной совместимости исходных видов варьировала от 0,4 до 2,8% и составила в среднем 1,5%. Наибольшей завязываемостью характеризовалась комбинация Зарница х Вольтарио (2,8%), наименьшей – Плиса х Гренадо (0,4%). Всхожесть гибридных семян, характеризующая постгамную совместимость, варьировала от 50,0 до 59,3% и составила в среднем 56.1%.

Таблица 1 – Завязываемость гибридных зерен при скрещивании тетраплоидной ржи (RRRR, 4x=28) с гексаплоидными тритикале (AABBRR, 6x=42), 2011-2013 гг.

Комбинация	Опылено цветков, шт.	Завязалось зерен, шт.	*Завязываемость, %	
Пламя х Янка	1672	34	2,0	
Пламя х Вольтарио	2344	47	2,0	
Пламя х Гренадо	1724	43	2,5	
Пламя х Балтико	1972	16	0,8	
Зарница х Вольтарио	1818	50	2,8	
Зарница х Гренадо	1524	11	0,7	
Зарница х Балтико	1792	21	1,2	
Плиса х Гренадо	2008	8	0,4	
Плиса х Вольтарио	1836	30	1,6	
Плиса х Балтико	2008	20	1,0	
Среднее	1870 +72	28 +5	1,5 +0,3	

* HCP_{or} 0,7

Завязываемость гибридных зерен при беккроссе ржано-тритикальных пентаплоидов F_1 на тетраплоидную рожь (таблица 2) составила в среднем 1,2% и варьировала от 0 до 3,0%. Всхожесть их составила в среднем 37,3% с варьированием по комбинациям от 23,0 до 50,0%.

Таблица 2 – Завязываемость гибридных зерен при беккроссе ржанотритиакльных пентаплоидов F_1 (RRABR, 5x=35) на тетраплоидную рожь (RRRR, 4x=28) (F_1BC_1), 2012-2013 гг.

Число комбинаций	Опылено цветков, шт.	Завязалось зерен, шт.	Завязываемость, %
17	22246	279	1,3

Кариотипы гибридов F_1BC_1 содержали различное число хромосом, которое варьировало от 28 до 38 (таблица 3). Чаще других встречались 32-хромосомные, реже – 28-, 29-, 36- и 38-хромосомные растения.

Таблица 3 – Число хромосом у гибридов F,BC, полученных от скрещивания ржано-тритикальных пентаплоидов F,(RRABR, 5x=35) с тетраплоидными сортами ржи (RRRR, 4x=28)

Число комбинаций	Всего растений, шт.	Количество хромосом, шт.										
		28	29	30	31	32	33	34	35	36	38	
	9	80	2	2	19	5	25	8	9	6	2	1

Таким образом, у ржано-тритикальных гибридов F_1 (RRABR, 5x=35) вследствие взаимодействия генетических систем контроля микроспорогенеза ржи и пшеницы (Sy- и Ph-гены) и особенностей их геномного состава [7] в мей-щзе формируются 14-24-хромосомные жизнеспособные гаметы, что указывает на наличие хромосом пшеницы в кариотипе гибридов F_1BC_1 . Утилизация таких гамет приводит к формированию 28-38-хромосомных генотипов и служит предпосылкой создания тетраплоидной ржи с интрогрессией генетического материала пшеницы.

Полученные ржано-тритикальные гибриды F_1BC_1 по содержанию в кариотипе хромосом пшеницы можно разделить на 3 группы: тетраплоидная рожь (8,7%), тетраплоидная рожь с отдельными добавленными хромосомами пшеницы (34,8%) и тетраплоидная рожь, имеющая как замещенные хромосомы ржи хромосомами пшеницы, так и добавленные хромосомы пшеницы (56,5%). Три растения тетраплоидной ржи имели в кариотипе дополнительно длинное или короткое плечо 2R хромосомы.

В целом частота замещений хромосом ржи на хромосомы пшеницы у гибридов по гомеологичным группам варьировала в среднем от 2,5 до 9,8% (таблица 4). Число замещений ржаных хромосом пшеничными составляло от 1 до 3 на растение и только у одного растения выявлено одновременно 4 замещения. Замещение хромосом ржи на хромосомы В-генома пшеницы происходило в 2 раза чаще (64,7%), чем на хромосомы А-генома (29,4%). Чаще всего происходили замещения в 1- и 2-й гомеологичных группах (1A(1R), 1B(1R); 2A(2R), 2B(2R)) и реже – в 3-, 5-, 6- и 7-й гомеологичных группах. Не выявлено замещений в 4-й гомеологичной группе.

Различия в частоте замещений ржаных хромосом хромосомами пшеницы между гомеологичными группами связаны с различной жизнеспособностью сформированных функциональных гамет у ржано-тритикальных пентаплоидов F_1 (RRABR, 5x=35).

Apomocombi ilizoniagi z kapitorinio pikatio i pri ikaziziliziki itopiagoz i 1201								
E-6 E DC	Типы и частота межгеномных гомеологичных замещений хромосом							
Γ ибридов F_1BC_1	А-замещения	Частота, %	В-замещения	Частота,%				
	1A(1R)	4,4	1B(1R)	1,7				
	2A(2R)	2A(2R) 2,8		4,4				
	3A(3R)	0,4	3B(3R)	4,4				
20	4A(4R)	0	4B(4R)	0				
	5A(5R)	2,4	5B(5R)	1,6				
	6A(6R) 1,6		6B(6R)	0				
	7A(7R)	2,0	7B(7R)	4,8				

Таблица 4 – Типы и частота межгеномных замещений хромосом ржи на хромосомы пшеницы в кариотипе ржано-тритикальных гибрилов F BC

Частота дополнений хромосом пшеницы у гибридов варьировала по гомеологичным группам в среднем от 0 до 4,8% (таблица 5). Дополненные хромосомы пшеницы были представлены А- и В-геномами и всеми гомеологичными группами. Наибольшая частота дополнений связана с хромосомами А-генома пшеницы (47,8%). Хромосомы В-генома включены у гибридов F, BC, в 36,1% случаев. Имелись случаи одновременного включения у гибридов в той или иной гомеологичной группе хромосом А- и В-геномов (18,1%). Наибольшая частота дополнений хромосом выявлена в 4-й гомеологичной группе (6,1-9,8%). У остальных гомеологичных групп дополнение хромосом А- и В-геномов пшеницы происходило с частотой 2,5-7,0%.

Таблица 5 – Типы и частота межгеномных дополнений хромосом пшеницы в кариотипе ржано-тритикальных гибридов F, BC,

Fuénuron E PC	Типы и частота межгеномных гомеологичных дополнений хромосом						
Γ ибридов F_1BC_1	А-дополнения	ополнения Частота, %		Частота, %			
	1R + 1A	2,5	1R + 1B	2,8			
20	2R + 2A	2R + 2A 4,2		2,9			
	3R + 3A	3,3	3R + 3B	2,5			
	4R + 4A	9,8	4R + 4B	6,1			
	5R + 5A	3,2	5R + 5B	6,6			
	6R + 6A	7,0	6R + 6B	5,3			
	7R + 7A	5,3	7R + 7B	3,7			

Заключение

Использование в скрещиваниях с тетраплоидной рожью гексаплоидных тритикале в качестве вида-посредника и источника генетического материала пшеницы позволяет преодолеть одностороннюю прои постгамную несовместимость ржи с пшеницей и получить в достаточном количестве частично фертильные ржано-тритикальные гибриды F₄. У ржано-тритикальных гибридов F₄ (RRABR, 5x=35) вследствие взаимодействия генетических систем контроля микроспорогенеза ржи и пшеницы (Sy- и Ph-гены) и особенностей их геномного состава в мейозе формируются 14-24-хромосомные жизнеспособные гаметы с близким к диплоидному набору хромосом R генома ржи и хромосомами А и В субгеномов пшеницы в моносомном состоянии в различном соотношении. Утилизация таких гамет путем беккроссирования гибридов F, на тетраплоидную рожь приводит к формированию в F, BC, 28-38-хромосомных генотипов ржи с различными сочетаниями R(A) и/или R(B) замещений и дополнений хромосом A и B геномов пшеницы с высокой частотой. Полученные данные позволили обосновать эффективный метод создания тетраплоидной ржи с широким спектром интрогрессий генетического материала пшеницы с целью расширения генофонда исходного материала для селекции.

Авторы выражают благодарность Н.И. Дубовец, Л.А. Соловей, Т.И. Штык, Е.Б. Бондаревич за помощь в проведении кариотипирования гибридного материала.

Литєратура

- 1. *Жученко*, А.А. Роль мейотической рекомбинации в эволюции и селекции растений / А.А. Жученко // В кн.: Идентифицированный генофонд растений и селекция. СПб.: ВИР, 2005. С. 102-179.
- 2. *Saulescu*, *N.N.* Transferring Useful Rye Genes to Wheat, Using Triticale as a Bridge / N.N. Saulescu, G. Ittu, M. Ciuca, M. Ittu, G. Serban, P. Mustatea // Czech J. Genet. Plant Breed. 2011. V. 47. P. 56-62.
- 3. *Rabinovich*, *S.V.* Importance of wheat-rye translocations for breeding modern cultivars of Triticum aestivum L. / S.V. Rabinovich // Euphytica. 1998. V. 100. P. 323-340.
- 4. *Apolinarska*, *B*. Substitutions, additions and translocations of wheat chromosomes in diploid rye / B. Apolinarska // Bull. Plant Breed. Acclim. Inst. 2003. V. 230. P. 195-203.
- 5. *Гордей, И.А.* Секалотритикум (xSecalotriticum): генетические основы создания и формирования генома / И.А. Гордей, Н.Б. Белько, О.М. Люсиков. Минск: Берарус. навука, 2011. 214 с.
- 6. *Ермишин, А.П.* Несовместимость при межвидовой и внутривидовой гибридизации диплоидного картофеля и пути ее преодоления / А.П. Ермишин // Весці НАН Беларусі. Сер. біал. навук. 2001. №3. С. 105-118.

7. *Люсиков*, *О.М.* Создание ржано-пшеничных амфидиплоидов с цитоплазмой ржи — секалотритикум (RRAABB, 2n=42): Специфичность мейоза у ржано-тритикальных гибридов F₁ (RRABR, 5x=35) / О.М. Люсиков, Н.Б. Белько, И.С. Щетько, И.А. Гордей // Генетика. –2005. — Т. 41, №7. — С. 902-909.

DEVELOPMENT OF NEW TERTRAPLOID RYE FORMS (SECALE CEREALE L., 4X = 28) INVOLVING WHEAT (TRITICUM AESTIVUM L.) GENETIC MATERIAL BASED ON INTROGRESSIVE HYBRIDIZATION WITH TRITICALE (TRITICOSECALE WITTM., 6X=42)

S.I. Grib, N.B.Belko, I.S.Gordej

The method for developing tetraploid rye (*Secale cereale* L., 4x = 28) involving wheat (*Triticum aestivum* L.) genetic material has been experimentally substantiated. The research results of introgressive hybridization of tetraploid rye with hexaploid triticale (*Triticosecale* Wittm., 6x = 42) – an intermediate species and source of wheat genome chromosomes are described. The data on the karyotypic composition of rye-triticale hybrids F_1BC_1 produced by the chromosome differential staining method (C-banding) are presented.

УДК 633.14«324».631.55(476)

ОСОБЕННОСТИ ВОССТАНОВЛЕНИЯ ФЕРТИЛЬНОСТИ ПЫЛЬЦЫ У ГЕТЕРОЗИСНЫХ ГИБРИДОВ F_1 ОЗИМОЙ РЖИ (SECALE CEREALE L.)

С.И. Гордей, кандидат биол. наук, **Э.П. Урбан,** доктор с.-х. наук Научно-практический центр НАН Беларуси по земледелию

(Поступила 30.09.2014 г.)

Аннотация. В статье изложены основные результаты изучения индекса восстановления фертильности у гетерозисных гибридов F_1 с использованием разных типов цитоплазматической мужской стерильности (ЦМС). Установлен относительно низкий уровень восстановления фертильности пыльцы для ЦМС «Ратра»-типа у большинства экспериментальных гибридов F_1 . Показано, что использование гена восстановления фертильности от Иранской ржи может существенно повысить индекс восстановления, но эффект гена разный при использовании раз-